If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-4x-6=0
a = 20; b = -4; c = -6;
Δ = b2-4ac
Δ = -42-4·20·(-6)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{31}}{2*20}=\frac{4-4\sqrt{31}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{31}}{2*20}=\frac{4+4\sqrt{31}}{40} $
| -6x-3+111=180 | | 3y+42=3y+42 | | 5z+4+111=180 | | 1=10c | | 23x+9=11x-39 | | 3(3x-1)=2x+18 | | 4x+2=2x=10 | | -5(t+9)=-20 | | 108=9(2x=6) | | 4+4y=+2y+6 | | 3a/4=-9 | | 95/15n=57 | | -4/5x+14=86 | | 0=3x^2-7x-286 | | 1/3(2x+6=-3(x+4)-4 | | 15x+50=25 | | 12+2D=4d-8 | | 6z+1=2(3z+1) | | 5x+4x-20+x=180 | | 112=5.6x | | 245x=2.695 | | 4=4(q+3) | | 10^(x-2)=1.000 | | 414-9r=45 | | 414-4r=45 | | 6x+4=12x-6 | | 6n=0.42 | | 2(3x+18)=12 | | 16t2+52=0 | | -8+b/3=10 | | 38=y+5.6 | | 5x/14=10 |